Grammar-Constrained Decoding for
Large Language Models

Saibo Geng, Arina Rak, Robert West

Data Science Lab, EPFL

June 18, 2024

Outline of talk

@ Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

@ Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

© Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

2/38

Table of Contents

@ Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

3/38

Table of Contents

@ Introduction
Large Language Models

4/38

What is Large Language Model (LLM)?

AN Act like an UX writing expert and write five article ideas to post on Medium. Use long-tail

keywords from the UX domain.

"Maximizing User Engagement Through Microcopy: Tips and Tricks for UX Writers"

&)

"Designing for Inclusivity in UX Writing: How to Create Accessible and User-Friendly

Content"
3. "The Role of UX Writing in Design Systems: How to Create Consistent and Scalable

Content"
"Creating Emotional Connections Through UX Writing: How to Use Language to Enhance

the User Experience"
“The Importance of User Research in UX Writing: How to Use Data to Inform and Improve

Content Strategy"

Figure: Example of ChatGPT convseration

Large Language Model = ChatGPT?
For many people, LLMs are synonymous with ChatGPT because
ChatGPT is the first LLM that has been widely used by the public. It is

also by far the most popular LLM.

5/38

Large Language Model

Large Language Model is auto-completer

From an academic perspective, LLMs are probabilistic models that gives
the probability of the next word given the previous words, i.e.
P(w;i|wy,wa,...;w;_1).
It's not wrong to say that

® [LMs are a super powerful autocompleter.

® the autocomplete system on your smartphone is a tiny LLM.

T saw a cat|

I saw a cat on the chair

I saw a cat running after a dog
I saw a cat in my dream

I saw a cat book

Figure: Example of autocompleter, taken from Voita [2024]

6/38

Why is Large Language Model Powerful?

1000

T3 (1758)

" Megatron-Turing NLG (5308)

MegatronLM (5.38) Turing-NLG (17.26)
uring N

s (11e)

6PT-2(1.58)

BERT-Large (340M)

Model Size (in billions of parameters)

ELMo (94M)

2018 2019 2020 2021 2022

Figure: LLM’s Moore's Law, from Huggingface

Langauge models are fundamentally autocompleters, why they suddenly
become so powerful?

® better neural network architectures and training algorithms
® much bigger model

® much much more data

® much much much more compute (GPUs, TPUs, etc.)

7/38

GCD is an orthogonal research direction

Grammar-Constrained Decoding is orthogonal to the following aspects of
the model:

@ Model architecture, size
® Data quality, quantity
® Training
© Computation
Rather, we focus on the generation process itself, which is
® Agnostic to the model architecture -> general
® Deterministic -> robust
©® Algorithm-based -> Interpretable

8/38

What the heck is Grammar-Constrained Decoding?

example@gmail.

L

@([a-zA-Z0-9_.+-]#)\!

Figure: Example of Regular Expression

GCD = Regular Expression for LLM

The best way to explain Grammar-Constrained Decoding is to think of it
as a regular expression for LLMs.
® Regular Expression: an expression that defines a pattern; return
strings that match the pattern.
® Grammar-Constrained Decoding: an expression that define a
pattern for LLMs; guide LLMs to generate strings that match the
pattern.

® Regular Expression is indeed a special type of Grammar. ,
9/38

Grammar-Constrained Decoding is behind OpenAl JSON mode

JSON mode

A common way to use Chat Completions is to instruct the model to always return a JSON object that makes sense for your use
case, by specifying this in the system message. While this does work in some cases, gecasionalijithemodelSimayigencrate
output that does not parse to valid JSON objects.

To prevent these errors and improve model performance, when using gpt-4o , gpt-4-turbo ,or gpt-3.5-turbo ,youcan
set response_formatto { "type": "json_object" } toenable JSON mode. When JSON mode is enabled iéimodelis
constrained to only generate strings that parse into valid JSON object.

Important notes:

* When using JSON mode, always instruct the model to produce JSON via some message in the conversation, for example
via your system message. If you don't include an explicit instruction to generate JSON, the model may generate an
unending stream of whitespace and the request may run continually until it reaches the token limit. To help ensure you
don't forget, the API will throw an error if the string "JSON" does not appear somewhere in the context.

* The JSON in the message the model returns may be partial (i.e. cut off) if finish_reason is length ,which indicates the
generation exceeded max_tokens or the conversation exceeded the token limit. To guard against this, check
finish_reason before parsing the response.

* JSON mode will not guarantee the output matches any specific schema, only thatitis valid and parses without errors.

Y T I T T T Y Y T T e 10/38

How do Large Language Models Generate Text?

As LLMs are fundamentally autocompleters, they iteratively estimate
the probability of the next word given the previous words.
The generation process is as follows:

@ LLM estimate the probability of the next word
® choose wisely the next word
© repeat until LLM thinks the sentence is finished

T was happy to

P(* | I was happy to)
I was happy to see

meet 0.05
see 0.040 (* | T was happy to see
be
& 002 that 0.20
""" the 0.08
eat 0.01 you 0.06

them 0.02
Figure: How LLM generate the next
words, from Voita [2024]

11/38

Generation Process in Tree Structure

Generation Process
® The generation process of LLM can be viewed as a tree structure
® This is true for all LLMs regardless of their implementation.
® This process is also known as decoding
® Different approaches to get better text from LLMs are called
decoding strategies

<END>

cat (50%)
(30%) meowed <END>
a (50%) (100%)
(25%) <END>
dog < (80%)
(70%) barked <END>
—

(20%) (100%)
<START: END>
<

cat (50%)
(27%) meowed <END>
—
the

(50%) (100%)

(75%) <END>
dog (75%)

(73%) barked <END>

(25%) * (100%)

Figure: Generation process visualized as a tree structure

12/38

Table of Contents

@ Introduction

Information Triplets Extraction with LLM

13/38

Knowledge Graph

Definition
A knowledge graph is a graph-structured knowledge base that represents
real-world entities and their relationships.

® Nodes: Entities

® Edges: Relationships

® Triples: (subject, relation, object)
® Example: Wikidata, DBpedia, YAGO
® Size: 10M+ entities

F
H
n
s
K
2

is a friend of

14 /38

Information Triplets Extraction

Task Description
Given a text (article, sentence, etc.), extract a set of facts under the form
of triplets (subject, relation, object).

Input: MONA LISA is a painting by Leonardo da Vinci.
Expected Output: {[DA VINCI, painted, MONA LISA]}

LA JOCONDE
A WASHINGTON

pausiasey

Jan 11984

Figure: A subset of knowledge graph

15/38

Challenge of Reliable Triplets Extraction

Consistency Constraint

@ The extracted entities are linked to a knowledge graph, e.g.

MONA LISA is a painting by Leonardo da Vinci.
%
[MONA LISA(Q12418), painted(R17), Da Vinci(Q762)]

”
[MONA LISA(Q12418), painted by(?), Leonardo da Vinci(?)]

Challenges

® Output needs to be strictly matched to the given knowledge graph

® Size of the knowledge graph can be large, i.e. Wikidata has 10M+
entities

How can we ensure the triplets extracted are consistent with the
knowledge graph?

16 /38

Can we constrain the generation process?

High-level idea

At some generation steps, we should constrain the token selection to
specific tokens to improve the generation quality.

For example, as Leonardo Da Vinci is not in KG, we should remove it
from the generation process.

— This is called Constrained Decoding.

Constrained Decoding

—
X
X

PR Da (15%)
[s] Mona Lisa [r] painted [e] ??

Lexical Constraints: teon(10%)

disallow words not in KG

Figure: Constrainted Decoding for Information Triplet Extraction

17 /38

Table of Contents

@ Introduction

Constrained Decoding

18/38

Essential Problem of Constrained Decoding: Is the next token

valid?

Essential Problem
The essential problem of constrained decoding is to design a constraint
specific checker function which can determine whether a candidate
token is valid or not.
Once we have this function, we can remove the invalid tokens from the
vocabulary.
By repeating this process, we can ensure that the generated sequence
satisfies the constraints.
So we need a function:

IsTokenValid: token — > bool.

Constraint Type Checker Function
Prohibited Words List | Check if the token is in the set
No Word Repetition | Count token occurrence
Valid JSON object Rather complex, discuss in the next slide

Table: Different Constraint Types

19/38

Table of Contents

@ Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

20/38

Table of Contents

@ Grammar-Constrained Decoding
Formal Grammars

21/38

Formal Grammar and Formal Language

Language and Grammar
@ In computer scientist’s eyes, a language is a set of sentences that
has a common structure.

® For example, the English language is the set of sentences that
follow the rules of English grammar.

® A sentence that does not follow the rules of English grammar is
not part of the English language.

Formal Language and Formal Grammar

In the context of computer science, a formal language is a set of strings
that can be described by a formal grammar.

For example, the set of all balanced parentheses strings is a formal
language(it has even a name, the Dyck language)

® (()) is a balanced parentheses string
® (() is not a balanced parentheses string

22/38

What is Formal Grammar ?

Formal Grammar

® Formalism: Provides a systematic way to define the language
structure.

® Computational: Enables the use of efficient algorithms to validate
the language structure.

Grammar for Balanced Parentheses Language
S—=("S")" e
Use grammar to generate valid sentences

Given a grammar, we can generate all valid sentences in the language.
For example, we try to generate (()) using the grammar above.

S=""s")
=Sy
=Y

23/38

More useful example: grammar for JSSON(Simplified)

JSON

® JSON is a simple data
interchange format.

® |t consists of objects and
arrays.

® Objects are collections of
key-value pairs.

S — object | array
object — { } | { pair (, pair)= }
pair — string : value
array — []| [value (, value)x]
value — string | number | object |
array | true | false | null
string — [a-zA-Z0-9]%

Example

Let's derive a simple JSON object:
{"key": "value"}.
Derivation:

S — object
object — { pair }
pair — string : value
string — chars (where chars — "key")

value — string (where string — "value")

Done in 5 steps !

24 /38

Grammar for Closed Information Extraction (clE)

Grammar for Closed Information Extraction
We now try to write a grammar to describe the structure of triplets.

S (e] "I a" [5"lol"c S)
a = (Entity-1| ... | Entity-N),
B = (Relation-1| ... | Relation-M)

Derivation
Given the sentence: “[s] Mona Lisa [r] painted [o] Da Vinci"

S="s]" a[r]" B8 "[o]" @S Use production rule 1
= "[s]” Mona Lisa “[r]" 8 “[0]" @ S Derive the subject
= “[s]" Mona Lisa “[r]" painted “[0]" & S Derive the relation
= “[s]" Mona Lisa “[r]" painted “[0]" Da Vinci S Derive the object
= "“[s]" Mona Lisa “[r]" painted “[0]" Da Vincie Derive the empty string

25 /38

Table of Contents

@ Grammar-Constrained Decoding

From Parsing to GCD

26 /38

Fundamental Concept: Parsing

What is parsing?

Given a string and a grammar, parsing is the process of determining
whether the string is consistent with the grammar. Example
(balanced parentheses):

Input: (O()) — Output: True

Input: (()(— Output: False

Takeaway from Parsing

® Any well-formed grammar(context-free grammar) can be parsed
and the parsing be done efficiently.

This is theory exactly answers the fundamental question in GCD. Recall
that in GCD, our fundamental task is to know if the generated string is
consistent with the grammar.

27 /38

From classical parsing to grammar-constrained decoding

Assume parsing works

Parsing let us know if a sentence is valid according to a grammar.
It provides a IsSentenceValid function: str — > bool.

How GCD works
The high-level algorithm of GCD is:

@ Given an existing sentence(not necessarily complete) s

@® Get a probability distribution over the next token P(w;]|s)

© For each candidate token w; in the distribution:

o Check if the sentence s+ w; is valid according to the parser
(5 If valid, add w; to the whitelist

® sample from the whitelist

@ Repeat until the sentence is complete

28 /38

Main Components of GCD

Three Main Components of
GCD:

® A grammar G , whcih is
provided by the user, task
specific.

® A GCD library, which will takes
care of the parsing.

® A LLM, which will work as an

engine to generate the next
token.

Grammar for closed information extraction (clE):
S— (| [s]alr]p o]l al
a = (Entity-1| ... | Entity-N), 8 = (Relation-1| ... | Relation-M)

x = “Burundi
moved its capital

from Bujumbura to
Gitega”

{7 y [s] Burundi

[x] capital
LM [o] Gitega

Grammar-constrained
decoding (GCD)

t=0
t=1
t=2
t=3
LEGEND: S: root non-terminal
x: input &: empty string [O: allowed tokens
y: output «: entities from KB {7): forbidden tokens

$: end of sequence f: relations from KB~ —: decoding path

20/38

Specificity with Tokenization in LLM

Tokens of LLM are rather messy

In LLM, the minimal unit of generation is a token, which is a chunk of
characters, usually a part of a word.

Depth String Tokenization Tokens

0 EE 1] BOS =1
1 o 1, 5159] ul = s18
2 Hg 1, 518, 2636, 29962 | [l = 2636
3 "o 1, 5519, 2636, 5262 | u[[= 5519
4 g 1, 5519, 20961, 2636, 5262, 29062] [[= 29961
5 [l o 1, 5519, 8999, 2636, 5262, 5262] [[[= 8999
6 "Il " 1, 5519, 8999, 20061, 2636, 5262, 5262, 29962] = 20062
7 "I 1" 1, 5519, 8999, 8999, 2636, 5262, 5262, 5262]]] = 5262
8 "Il s 1, 5519, 8999, 8999, 20061, 2636, 5262, 5262, 5262, 29962] U] = 5159

Figure: Tokenization Output for Nested Brackets Using LLaMA Tokenizer

The token IDs are not aligned with the original characters

As shown in Fig. 10, tokenizing a few strings with a very simple
structure, such as balanced parentheses, results in a non-trivial sequence
of token IDs

30/38

Table of Contents

© Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

31/38

Table of Contents

© Applications of Grammar-Constrained Decoding
Libraries for GCD

32/38

Libraries with GCD support

Many libraries for controlled
generation

epfl-dlab/transformers-CFG
guidance-ai/guidance
outlines-dev/outlines
sgl-project/sglang
eth-sri/Imq|

microsoft/aici
noamgat/Im-format-enforcer
stanfordnlp/dspy
jxnl/instructor

paralleldrive/sudolang-lim-
support

But only a few support CFGs

® epfl-dlab/transformers-CFG

® guidance-
ai/guidance(Microsoft)

® outlines-dev/outlines(Hugging
Face)

Differences among them:

® Grammar interface: EBNF,
Custom, etc.

® Parsing algorithm: Earley,
recursive descent, etc.

® Other features: Unicode
support, LLM inference Engine,
etc.

33/38

https://github.com/epfl-dlab/transformers-CFG
https://github.com/guidance-ai/guidance
https://github.com/outlines-dev/outlines
https://github.com/sgl-project/sglang
https://github.com/eth-sri/lmql
https://github.com/microsoft/aici
https://github.com/noamgat/lm-format-enforcer
https://github.com/stanfordnlp/dspy
https://github.com/jxnl/instructor
https://github.com/paralleldrive/sudolang-llm-support
https://github.com/paralleldrive/sudolang-llm-support
https://github.com/epfl-dlab/transformers-CFG
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/outlines-dev/outlines
https://github.com/outlines-dev/outlines

Table of Contents

© Applications of Grammar-Constrained Decoding

Downstream Tasks

34 /38

Applications of GCD

N
Machine-Oriented Generation , GeoQuery
. _ Logical queries for database of
One can categorize the applications
. . . Geography facts
of LLM into two main categories: > 4
® Human-Oriented Generation SMCalFlow
® Machine-Oriented Calendar management utterances
Generation ~ /
. 4 . N
GCD is towards the second. Overnight
Queries about objects in a
Examples of GCD tasks L synthetic world)
® Reliable JSON generation 4 SMILES h
® Domain-specific language Class-Specific Molecule
generation L Representation)

® Strong §tructured data Figure: Examples of code generation
generation el

35/38

Table of Contents

© Applications of Grammar-Constrained Decoding

Demo: Transformers-CFG

36 /38

Thank You!

Questions?

Saibo Geng
EPFL
saibo.geng@epfl.ch

References

Lena Voita. Natural language processing course, 2024. URL
https://lena-voita.github.io/nlp_course.html. Accessed:
2024-06-17.

38 /38

https://lena-voita.github.io/nlp_course.html

	Introduction
	Large Language Models
	Information Triplets Extraction with LLM
	Constrained Decoding

	Grammar-Constrained Decoding
	Formal Grammars
	From Parsing to GCD

	Applications of Grammar-Constrained Decoding
	Libraries for GCD
	Downstream Tasks
	Demo: Transformers-CFG

	References

