
Grammar-Constrained Decoding for
Large Language Models

Saibo Geng, Arina Rak, Robert West

Data Science Lab, EPFL

June 18, 2024

1 / 38

Outline of talk

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

2 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

3 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

4 / 38

What is Large Language Model (LLM)?

Figure: Example of ChatGPT convseration

Large Language Model = ChatGPT?
For many people, LLMs are synonymous with ChatGPT because
ChatGPT is the first LLM that has been widely used by the public. It is
also by far the most popular LLM.

5 / 38

Large Language Model

Large Language Model is auto-completer
From an academic perspective, LLMs are probabilistic models that gives
the probability of the next word given the previous words, i.e.
P(wi |w1,w2, ...,wi−1).
It’s not wrong to say that
• LLMs are a super powerful autocompleter.
• the autocomplete system on your smartphone is a tiny LLM.

Figure: Example of autocompleter, taken from Voita [2024]

6 / 38

Why is Large Language Model Powerful?

Figure: LLM’s Moore’s Law, from Huggingface

Langauge models are fundamentally autocompleters, why they suddenly
become so powerful?
• better neural network architectures and training algorithms
• much bigger model
• much much more data
• much much much more compute (GPUs, TPUs, etc.)

7 / 38

GCD is an orthogonal research direction

Grammar-Constrained Decoding is orthogonal to the following aspects of
the model:

1 Model architecture, size
2 Data quality, quantity
3 Training
4 Computation

Rather, we focus on the generation process itself, which is
1 Agnostic to the model architecture -> general
2 Deterministic -> robust
3 Algorithm-based -> Interpretable

8 / 38

What the heck is Grammar-Constrained Decoding?

Figure: Example of Regular Expression

GCD = Regular Expression for LLM
The best way to explain Grammar-Constrained Decoding is to think of it
as a regular expression for LLMs.

1 Regular Expression: an expression that defines a pattern; return
strings that match the pattern.

2 Grammar-Constrained Decoding: an expression that define a
pattern for LLMs; guide LLMs to generate strings that match the
pattern.

3 Regular Expression is indeed a special type of Grammar.
9 / 38

Grammar-Constrained Decoding is behind OpenAI JSON mode

Figure: OpenAI JSON mode from the OpenAI website

1 You may have already used it without knowing it!
2 Let’s demystify the JSON mode from OpenAI.

10 / 38

How do Large Language Models Generate Text?

As LLMs are fundamentally autocompleters, they iteratively estimate
the probability of the next word given the previous words.
The generation process is as follows:

1 LLM estimate the probability of the next word
2 choose wisely the next word
3 repeat until LLM thinks the sentence is finished

Figure: How LLM generate the next
words, from Voita [2024]

11 / 38

Generation Process in Tree Structure

Generation Process
• The generation process of LLM can be viewed as a tree structure
• This is true for all LLMs regardless of their implementation.
• This process is also known as decoding
• Different approaches to get better text from LLMs are called

decoding strategies

Figure: Generation process visualized as a tree structure

12 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

13 / 38

Knowledge Graph

Definition
A knowledge graph is a graph-structured knowledge base that represents
real-world entities and their relationships.
• Nodes: Entities
• Edges: Relationships
• Triples: (subject, relation, object)
• Example: Wikidata, DBpedia, YAGO
• Size: 10M+ entities

14 / 38

Information Triplets Extraction

Task Description
Given a text (article, sentence, etc.), extract a set of facts under the form
of triplets (subject, relation, object).
Input: MONA LISA is a painting by Leonardo da Vinci.
Expected Output: {[DA VINCI, painted, MONA LISA]}

Figure: A subset of knowledge graph 15 / 38

Challenge of Reliable Triplets Extraction

Consistency Constraint
1 The extracted entities are linked to a knowledge graph, e.g.

MONA LISA is a painting by Leonardo da Vinci.
→

[MONA LISA(Q12418), painted(R17), Da Vinci(Q762)]
̸=

[MONA LISA(Q12418), painted by(?), Leonardo da Vinci(?)]

Challenges
• Output needs to be strictly matched to the given knowledge graph
• Size of the knowledge graph can be large, i.e. Wikidata has 10M+

entities

How can we ensure the triplets extracted are consistent with the
knowledge graph?

16 / 38

Can we constrain the generation process?

High-level idea
At some generation steps, we should constrain the token selection to
specific tokens to improve the generation quality.
For example, as Leonardo Da Vinci is not in KG, we should remove it
from the generation process.
→ This is called Constrained Decoding.

Figure: Constrainted Decoding for Information Triplet Extraction

17 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

18 / 38

Essential Problem of Constrained Decoding: Is the next token
valid?

Essential Problem
The essential problem of constrained decoding is to design a constraint
specific checker function which can determine whether a candidate
token is valid or not.
Once we have this function, we can remove the invalid tokens from the
vocabulary.
By repeating this process, we can ensure that the generated sequence
satisfies the constraints.
So we need a function:
IsTokenValid: token −> bool.

Constraint Type Checker Function
Prohibited Words List Check if the token is in the set
No Word Repetition Count token occurrence
Valid JSON object Rather complex, discuss in the next slide

Table: Different Constraint Types

19 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

20 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

21 / 38

Formal Grammar and Formal Language

Language and Grammar
1 In computer scientist’s eyes, a language is a set of sentences that

has a common structure.
2 For example, the English language is the set of sentences that

follow the rules of English grammar.
3 A sentence that does not follow the rules of English grammar is

not part of the English language.

Formal Language and Formal Grammar
In the context of computer science, a formal language is a set of strings
that can be described by a formal grammar.
For example, the set of all balanced parentheses strings is a formal
language(it has even a name, the Dyck language)
• (()) is a balanced parentheses string
• (() is not a balanced parentheses string

22 / 38

What is Formal Grammar ?

Formal Grammar
• Formalism: Provides a systematic way to define the language

structure.
• Computational: Enables the use of efficient algorithms to validate

the language structure.

Grammar for Balanced Parentheses Language
S → “(” S “)” | ϵ

Use grammar to generate valid sentences
Given a grammar, we can generate all valid sentences in the language.
For example, we try to generate (()) using the grammar above.

S ⇒ “(” S “)”

⇒ “(” “(” S “)” “)”

⇒ “(” “(” “)” “)”

23 / 38

More useful example: grammar for JSON(Simplified)

JSON
• JSON is a simple data

interchange format.
• It consists of objects and

arrays.
• Objects are collections of

key-value pairs.

S → object | array
object →{ } | { pair (, pair)∗ }

pair → string : value
array → [] | [value (, value)∗]
value → string | number | object |

array | true | false | null
string → [a-zA-Z0-9]⋆

Example
Let’s derive a simple JSON object:
{"key": "value"}.
Derivation:

S → object
object →{ pair }

pair → string : value
string → chars (where chars → "key")
value → string (where string → "value")

Done in 5 steps !

24 / 38

Grammar for Closed Information Extraction (cIE)

Grammar for Closed Information Extraction
We now try to write a grammar to describe the structure of triplets.

S → (ϵ | “[s]”α“[r]”β“[o]”α S)

α= (Entity-1 | . . . | Entity-N),

β = (Relation-1 | . . . | Relation-M)

Derivation
Given the sentence: “[s] Mona Lisa [r] painted [o] Da Vinci"

S ⇒ “[s]” α “[r]” β “[o]” α S Use production rule 1
⇒ “[s]” Mona Lisa “[r]” β “[o]” α S Derive the subject
⇒ “[s]” Mona Lisa “[r]” painted “[o]” α S Derive the relation
⇒ “[s]” Mona Lisa “[r]” painted “[o]” Da Vinci S Derive the object
⇒ “[s]” Mona Lisa “[r]” painted “[o]” Da Vinci ϵ Derive the empty string

25 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

26 / 38

Fundamental Concept: Parsing

What is parsing?
Given a string and a grammar, parsing is the process of determining
whether the string is consistent with the grammar. Example
(balanced parentheses):
Input: (()()) → Output: True
Input: (()(→ Output: False

Takeaway from Parsing
• Any well-formed grammar(context-free grammar) can be parsed

and the parsing be done efficiently.

This is theory exactly answers the fundamental question in GCD. Recall
that in GCD, our fundamental task is to know if the generated string is
consistent with the grammar.

27 / 38

From classical parsing to grammar-constrained decoding

Assume parsing works
Parsing let us know if a sentence is valid according to a grammar.
It provides a IsSentenceValid function: str −> bool.

How GCD works
The high-level algorithm of GCD is:

1 Given an existing sentence(not necessarily complete) s

2 Get a probability distribution over the next token P(wi |s)
3 For each candidate token wi in the distribution:
4 Check if the sentence s+wi is valid according to the parser
5 If valid, add wi to the whitelist
6 sample from the whitelist
7 Repeat until the sentence is complete

28 / 38

Main Components of GCD

Three Main Components of
GCD:

1 A grammar G , whcih is
provided by the user, task
specific.

2 A GCD library, which will takes
care of the parsing.

3 A LLM, which will work as an
engine to generate the next
token.

x = “Burundi
moved its capital
from Bujumbura to
Gitega”

LM
y = “[s] Burundi
 [r] capital
 [o] Gitega”

LEGEND:
x: input
y: output
$: end of sequence

S: root non-terminal
𝜀: empty string
𝛼: entities from KB
𝛽: relations from KB

Burundi GMThisDuring

capital alsohasmember

Gitega isa Bujumbura

t = 0

t = 1

t = 2

$isAirport nowt = 3

Grammar-constrained
decoding (GCD)

 : allowed tokens
 : forbidden tokens
→: decoding path

Grammar for closed information extraction (cIE):

S → (𝜀 | [s] 𝛼 [r] 𝛽 [o] 𝛼 S)
𝛼 = (Entity-1 | … | Entity-N), 𝛽 = (Relation-1 | … | Relation-M)

…

…

…

…

29 / 38

Specificity with Tokenization in LLM

Tokens of LLM are rather messy
In LLM, the minimal unit of generation is a token, which is a chunk of
characters, usually a part of a word.

Depth String Tokenization Tokens
0 "" [1] BOS = 1
1 "[]" [1, 5159] ␣[= 518
2 "[[]]" [1, 518, 2636, 29962] [] = 2636
3 "[[[]]]" [1, 5519, 2636, 5262] ␣[[= 5519
4 "[[[[[]]]]" [1, 5519, 29961, 2636, 5262, 29962] [[= 29961
5 "[[[[[[]]]]]" [1, 5519, 8999, 2636, 5262, 5262] [[[= 8999
6 "[[[[[[[[]]]]]]" [1, 5519, 8999, 29961, 2636, 5262, 5262, 29962]] = 29962
7 "[[[[[[[[[]]]]]]]" [1, 5519, 8999, 8999, 2636, 5262, 5262, 5262]]] = 5262
8 "[[[[[[[[[[[]]]]]]]]" [1, 5519, 8999, 8999, 29961, 2636, 5262, 5262, 5262, 29962] ␣[] = 5159

Figure: Tokenization Output for Nested Brackets Using LLaMA Tokenizer

The token IDs are not aligned with the original characters
As shown in Fig. 10, tokenizing a few strings with a very simple
structure, such as balanced parentheses, results in a non-trivial sequence
of token IDs

30 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

31 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

32 / 38

Libraries with GCD support

Many libraries for controlled
generation
• epfl-dlab/transformers-CFG
• guidance-ai/guidance
• outlines-dev/outlines
• sgl-project/sglang
• eth-sri/lmql
• microsoft/aici
• noamgat/lm-format-enforcer
• stanfordnlp/dspy
• jxnl/instructor
• paralleldrive/sudolang-llm-

support

But only a few support CFGs
• epfl-dlab/transformers-CFG
• guidance-

ai/guidance(Microsoft)
• outlines-dev/outlines(Hugging

Face)
Differences among them:
• Grammar interface: EBNF,

Custom, etc.
• Parsing algorithm: Earley,

recursive descent, etc.
• Other features: Unicode

support, LLM inference Engine,
etc.

33 / 38

https://github.com/epfl-dlab/transformers-CFG
https://github.com/guidance-ai/guidance
https://github.com/outlines-dev/outlines
https://github.com/sgl-project/sglang
https://github.com/eth-sri/lmql
https://github.com/microsoft/aici
https://github.com/noamgat/lm-format-enforcer
https://github.com/stanfordnlp/dspy
https://github.com/jxnl/instructor
https://github.com/paralleldrive/sudolang-llm-support
https://github.com/paralleldrive/sudolang-llm-support
https://github.com/epfl-dlab/transformers-CFG
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/outlines-dev/outlines
https://github.com/outlines-dev/outlines

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

34 / 38

Applications of GCD

Machine-Oriented Generation
One can categorize the applications
of LLM into two main categories:
• Human-Oriented Generation
• Machine-Oriented

Generation
GCD is towards the second.

Examples of GCD tasks
• Reliable JSON generation
• Domain-specific language

generation
• Strong structured data

generation
Figure: Examples of code generation
tasks

35 / 38

Table of Contents

1 Introduction
Large Language Models
Information Triplets Extraction with LLM
Constrained Decoding

2 Grammar-Constrained Decoding
Formal Grammars
From Parsing to GCD

3 Applications of Grammar-Constrained Decoding
Libraries for GCD
Downstream Tasks
Demo: Transformers-CFG

36 / 38

Thank You!

Questions?

Saibo Geng
EPFL

saibo.geng@epfl.ch

37 / 38

References I

Lena Voita. Natural language processing course, 2024. URL
https://lena-voita.github.io/nlp_course.html. Accessed:
2024-06-17.

38 / 38

https://lena-voita.github.io/nlp_course.html

	Introduction
	Large Language Models
	Information Triplets Extraction with LLM
	Constrained Decoding

	Grammar-Constrained Decoding
	Formal Grammars
	From Parsing to GCD

	Applications of Grammar-Constrained Decoding
	Libraries for GCD
	Downstream Tasks
	Demo: Transformers-CFG

	References

